Synthetic data generation is the process of creating new data as a replacement for real-world data, either manually using tools like Excel or automatically using computer simulations or algorithms. If the real data is unavailable, the fake data can be generated from an existing data set or created entirely from scratch. The newly generated data is nearly identical to the original data.

Synthetic data can be generated in any size, at any time, and in any location. Despite being artificial, synthetic data mathematically or statistically reflects real-world data. It is similar to real data, which is collected from actual objects, events, or people in order to train an AI model.

When making business decisions, the use of actual data is always preferable. When such true raw data is unavailable for analysis, realistic data is the next best option. However, it should be noted that in order to generate synthetic data, data scientists with a solid understanding of data modeling are required. A thorough understanding of the actual data and its surroundings is also required. This is necessary to ensure that, if available, the generated data is as accurate as possible.